Spatio-Temporal Models of Intermediate Complexity for Ecosystem

 Assessments: a new tool for spatial fisheries managementJames T. Thorson ${ }^{1 *}$, Grant Adams ${ }^{2}$, Kirstin Holsman ${ }^{3}$
${ }^{1}$ Habitat and Ecosystem Process Research program, Alaska Fisheries Science Center, NMFS, NOAA, Seattle, WA, USA
${ }^{2}$ School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA, USA
${ }^{3}$ Resource Ecology and Fisheries Management program, Alaska Fisheries Science Center, NMFS, NOAA, Seattle, WA, USA
* Corresponding author
James.Thorson@noaa.gov
Running header: MICE-in-space models

Abstract

Multispecies models are widely used to evaluate management trade-offs arising from species interactions. However, identifying climate impacts and sensitive habitats requires integrating spatial heterogeneity and environmental impacts into multispecies models at fine spatial scales. We therefore develop a spatio-temporal model of intermediate complexity for ecosystem assessments (a "MICE-in-space"), which is fitted to survey sampling data and time-series of fishing mortality using maximum likelihood techniques. The model is implemented in the VAST R package, and it can be configured to range from purely descriptive to including ratiodependent interactions among species. We demonstrate this model using data for four groundfishes in the Gulf of Alaska using data from 1982-2015. Model selection for this case study shows that models with species interactions are parsimonious, although a model specifying separate density dependence without interactions also has substantial support. The AIC-selected model estimates a significant, negative impact of Alaska pollock (Gadus chalcogrammus, Gadidae) on productivity of other species and suggests that recent fishing mortality for Pacific $\operatorname{cod}(G$. microcephalus, Gadidae) is above the biological reference point (BRP) resulting in 40% of unfished biomass; other models show similar trends but different scales due to different BRP estimates. A simulation experiment shows that fitting a model with fewer species at a coarse spatial resolution degrades estimation performance, but that interactions and biological reference points can still be estimated accurately. We conclude that MICE-in-space models can simultaneously estimate fishing impacts, species-tradeoffs, biological reference points, and habitat quality. They are therefore suitable to forecast short-term climate impacts, optimize survey designs, and designate protected habitats.

Keywords: ecosystem model; models of intermediate complexity for ecosystem assessments; essential fish habitat; spatio-temporal model; VAST

Table of contents:

1. Introduction
2. Methods
a. Index-standardization model as starting point
b. Extending the model to account for species interactions
c. Parameter estimation
d. Case study application
e. Simulation experiment
3. Results
4. Discussion
a. Projecting climate impacts
b. Optimizing survey designs
c. Designation of essential fish habitat
d. Multi-model inference regarding status and productivity
e. Future research
5. Acknowledgements

1. Introduction

Fisheries managers use a mix of different management instruments to regulate fishing and other marine impacts (Walther and Möllmann 2014; Dolan et al. 2016). Scientific advice to support fisheries management typically includes (but is not limited to): limits on fishery landings and incidental catch for individual species; spatial regulation of activities occurring near sensitive habitats or species; ecosystem-based limits on total landings and fishing gears; and allocation of species quotas to different ports or fleets based on forecasted changes in species distribution or productivity. These four examples are informed, respectively, by analysis of stock status, habitat quality, ecosystem function, and climate linkages, and fisheries science is developing tools to implement these four types of analysis rapidly, transparently, and at low cost. Fisheries managers have benefited from tools that can be used for multiple types of analysis, e.g., by using "models of intermediate complexity for ecosystem assessments" (MICE; Plagányi et al. 2014) to simultaneously analyze stock status and multispecies tradeoffs.

The dynamics of marine species is regulated by biological interactions such as predation and competition, and also impacted by technical interactions arising from shared impacts of fishing activities (Gaichas et al. 2010; Pikitch et al. 2014; Spencer et al. 2016). As a result, harvesting can impact target species directly, and also impact interdependent species indirectly through changes in natural mortality and resource availability (Reum et al. 2019; Collie and Gislason 2001). The indirect impact of harvesting on non-target species may be counterintuitive, and fisheries management requires information regarding these impacts both to mitigate fishing impacts on unproductive species as well as to identify management strategies that are expected to perform well for a variety of stakeholders (Plagányi et al. 2011; Marshall et al. 2019).

Fisheries managers therefore use ecosystem models to identify potential trade-offs of management decisions that arise from biological and technical interactions (Hollowed 2000; Lassen et al. 2013; Plagányi et al. 2014). Ecosystem models can vary in complexity from models of intermediate complexity for ecosystem assessments (MICE), which estimate population parameters for a subset of key interacting species from time-series of data, to end-toend whole ecosystem models that simulate the interactions of multiple oceanographic, ecological, and anthropogenic processes (Plagányi et al. 2011; Collie et al. 2016; Ortiz et al. 2016). However, a key aspect of ecosystem models is that they incorporate processes such as predation, competition, and fishing (Plagányi and Butterworth 2012; Ortiz et al. 2016; Mackinson et al. 2018). These models are typically used to forecast changes in population density, productivity, and fishery catch under alternative management procedures and environmental conditions, and forecasts will likely be improved via explicit inclusion of biological and technical interactions (Howell and Filin 2014; Tommasi et al. 2017).

Global climate change is causing rapid shifts in the spatial distribution of physical habitat, nutrients, forage species, and predators. These shifts can cause rapid changes in structure and productivity for the ecosystem managed by a given jurisdiction. Models that fail to account for ecosystem changes resulting from spatial shifts are less likely to accurately forecast performance of alternative management procedures, and in some cases will have degraded performance when informing fisheries management (Kempf et al. 2010; Spencer et al. 2016; Fu et al. 2017). One avenue to account for ecosystem changes resulting from spatial distribution shifts is to develop ecosystem models that estimate variation in species density and/or productivity at fine-spatial scales while also accounting for species interactions (see review in Hunsicker et al. 2011)

Spatially-explicit ecosystem models are currently used to inform spatial planning, identify tradeoffs for alternative management strategies, and provide annual advice regarding limits on fishery harvest. Spatially-explicit ecosystem models that are widely used include Atlantis (Fulton et al. 2011), OSMOSE (Shin and Cury 2001), EwE (Christensen and Walters 2004), and Gadget (Begley and Howell 2004), and these existing models vary in the extent to which users must "tune them by hand" prior to further model usage. Ideally, spatially-explicit ecosystem models would have good statistical properties (e.g., statistical consistency and well-defined forecast intervals; (Magnusson et al. 2013)), would assimilate available data (e.g., resource surveys) through probabilistic estimation methods, and could provide biological reference points for harvest recommendations. In parallel, there is a growing literature developing multispecies spatio-temporal models to predict variation in density at fine spatial scales while estimating spatial correlation functions that are used to interpolate and extrapolate population density to unsampled locations (Ovaskainen et al. 2017; Thorson et al. 2017; Schliep et al. 2018). However, these previous approaches have not explicitly included fishing mortality, and therefore have not been capable of estimating biological reference points for regulating fishery catches.

We therefore develop a spatio-temporal multispecies model including species interactions, fishing mortality, and estimating fishing mortality and biomass relative to biological reference points that are commonly used in stock assessment. This spatio-temporal model has structural complexity intermediate between single-species and end-to-end ecosystem models while accounting for spatial variation, so we call it a "Spatial model of intermediate complexity for Ecosystem assessments" (MICE-in-space). It fits directly to survey data using maximumlikelihood techniques, and assumes that biological interactions depend upon local densities of modeled species. To do so, we extend an existing vector-autoregressive spatio-temporal
modelling framework, implemented using package VAST (Thorson and Barnett 2017), which has been used previously for stock assessments, ecosystem status reports, and journal articles in many regions worldwide (see Thorson (2019b) for examples). We then demonstrate this MICE-in-space model by application to survey data for four species in the Gulf of Alaska, and use a simulation experiment conditioned on this case study to explore the statistical properties of the model. Through development of generic software, we envision that MICE-in-space models will help further align stock, ecosystem, and habitat assessments, and improve future ecosystembased management advice.

2. Methods

We seek to develop an approach that combines features of three existing types of models used in marine ecosystems:

1. Spatially explicit models can be broadly categorized as "spatially stratified" or "spatiotemporal" models (Berger et al. 2017). Spatially stratified models have a long history in population and ecosystem modelling (Beverton and Holt 1957; Goethel et al. 2011), but typically cannot be fitted to data representing dynamics occurring at fine spatial scales because the amount of data per stratum decreases as the number of spatial strata is increased. By contrast, we develop a spatio-temporal model that incorporates a spatial correlation function to approximate dynamics occurring continuously across space (Cressie and Wikle 2011; Kristensen et al. 2014), such that the spatial resolution of the model can be manipulated with relatively small changes in model performance. Although there have been previous "spatio-temporal multispecies models" (e.g., Walters and Bonfil 1999), they typically have not been fitted statistically using techniques that estimate uncertainty.
2. Models of Intermediate Complexity (MICE), which represent dynamics for 2-10 species; explicitly consider environmental, ecological, anthropogenic, and management trade-offs; and fit to available data in a probabilistic framework that allows for model validation similar to conventional single-species models (Plagányi 2007). Specifically, our MICE-in-space model can fit a similar number of species while estimating parameters and generating probabilistic forecasts of spatio-temporal dynamics.
3. Joint dynamic species distribution models (JDSDM), which estimate population density including the degree of spatial autocorrelation; account for covariation in density and productivity among multiple species; and incorporate changes in spatial distribution for multiple species over time (Thorson et al. 2016). Specifically, the MICE-in-space model identifies the predicted mix of species encountered at any given location, thereby providing an estimate of likely technical interactions (e.g., Dolder et al. 2018).

Finally, we seek to combine these elements in a manner that allows ecologists to explore nested changes in model structure that scale in structural complexity from descriptive (i.e., without explicit models for species dynamics and interactions) through stacked single-species models (i.e., independent dynamics for each species) to multi-species models (i.e., explicitly considering species interactions). To accomplish these goals, we develop a model as follows.

2.1 Index-standardization model as starting point

We start by modelling biomass-density $d(s, c, t)$ for each category c (in this case representing different species), location s, and year t while fitting to samples of biomass, where b_{i} is the i-th sample (of I total samples), and this sample records biomass at location s_{i} for category c_{i} and year t_{i} (of S locations, C categories, and T years total). We first describe the simplest
multispecies spatio-temporal model configuration, which we call an "index standardization" model, and then describe how it is modified to approximate species interactions.

First, we adapt an existing Poisson-link delta model (Thorson 2018) that specifies the probability $\operatorname{Pr}\left(b_{i}=B\right)$ that the i-th sample b_{i} would yield a biomass of B. This model specifies this probability using numbers-density $n(s, c, t)$ and biomass-per-individual $w(s, c, t)$, where $d(s, c, t)=n(s, c, t) \times w(s, c, t):$

$$
\operatorname{Pr}\left(b_{i}=B\right)=\left\{\begin{array}{cc}
1-p_{i} & \text { if } B=0 \tag{1}\\
p_{i} \times g\left(B \mid r_{i}, \sigma^{2}(c)\right) & \text { if } B>0
\end{array}\right.
$$

where encounter probability $p_{i}=\exp \left(-a_{i} \times n\left(s_{i}, c_{i}, t_{i}\right)\right)$ follows a Poisson process given numbers density and the area swept a_{i} by the i-th sample. Similarly, the expected biomass given that a sample encounters the species, r_{i}, is defined such expected biomass $\mathbb{E}(B)=p_{i} \times r_{i}$, which yields $r_{i}=a_{i} \times n\left(s_{i}, c_{i}, t_{i}\right) \times w\left(s_{i}, c_{i}, t_{i}\right) / p(i)$, such that r_{i} is affected by both numbers density and biomass-per-individual. Finally, $g\left(B \mid r_{i}, \sigma^{2}\left(c_{i}\right)\right)$ is a probability density function for unexplained variation in positive catch rates given residual sampling variance $\sigma^{2}\left(c_{i}\right)$. This Poisson-link delta model is numerically efficient approximation to the compound Poissongamma distribution (Foster and Bravington 2013). We use it in the following because we will later approximate species interactions as a linear model for log-density, and the Poisson-link delta model allows us to predict biomass-sampling data while accounting for spatial and temporal variation in log-density.

Each component of the index-standardization model then has a separate intercept for each species and year $\left(\beta_{n}(c, t)\right.$ and $\beta_{w}(c, t)$), where these intercepts account for differences in average density among species (e.g., due to different equilibrium densities in the community, corresponding to different $\beta_{n}(c, t)$ for each species c) and over time (e.g., due to different levels
of spatial aggregation, captured via differences in $\beta_{w}(c, t)$ among years t). Each component also includes "spatial variation," which is constant over time $\left(\omega_{n}(s, c)\right.$ and $\left.\omega_{w}(s, c)\right)$, as well as "spatio-temporal variation," which varies over time $\left(\varepsilon_{n}(s, c, t)\right.$ and $\left.\varepsilon_{w}(s, c, t)\right)$:

$$
\begin{align*}
\log (n(s, c, t)) & =\beta_{n}(c, t)+\omega_{n}(s, c)+\varepsilon_{n}(s, c, t) \tag{2}\\
\log (w(s, c, t)) & =\beta_{w}(c, t)+\omega_{w}(s, c)+\varepsilon_{w}(s, c, t)
\end{align*}
$$

where spatial variation is estimated while specifying a multivariate probability distribution for $\omega_{n}(s, c)$ and $\omega_{w}(s, c)$:

$$
\begin{equation*}
\mathbf{\Omega}_{n} \sim \operatorname{MVN}\left(\mathbf{0}, \mathbf{R}\left(\kappa_{n}, \mathbf{H}\right) \otimes \mathbf{L}_{\omega n} \mathbf{L}_{\omega n}^{T}\right) \tag{3}
\end{equation*}
$$

where $\boldsymbol{\Omega}_{n}$ is the matrix of spatial variation $\omega_{n}(s, c)$, and $\mathbf{R}\left(\kappa_{n}, \mathbf{H}\right)$ is a matrix of spatial correlations among locations s given estimated decorrelation rate κ_{n} and a transformation matrix H. Estimated matrix \mathbf{H} represents the tendency for spatial correlations to decline faster in some directions than others, e.g., where ecosystems with a large variation in depth may tend to have to have spatial correlations that decline faster moving perpendicular to depth gradients than along those gradients. We model spatial correlations using a stationary Matérn correlation function although future studies could explore alternative spatial processes, e.g., where correlations vary as a function of local environmental conditions (e.g., Fuglstad et al., 2015). Meanwhile, $\mathbf{L}_{\omega n}$ is a triangular matrix representing species associations with one or more estimated "spatial factors," such that $\mathbf{L}_{\omega n} \mathbf{L}_{\omega n}^{T}$ is the estimated covariance in spatial distribution (e.g., Pollock et al. 2014), and we define an identical distribution for $\boldsymbol{\Omega}_{w}$, except involving a separate estimate of κ_{w} and $\mathbf{L}_{\omega w}$.

The index-standardization model specifies that spatio-temporal variation is independent in each year:

$$
\begin{equation*}
\operatorname{vec}\left(\mathbf{E}_{n}(t)\right) \sim M V N\left(\mathbf{0}, \mathbf{R}\left(\kappa_{n}\right) \otimes \mathbf{L}_{\varepsilon n} \mathbf{L}_{\varepsilon n}^{T}\right) \tag{4}
\end{equation*}
$$

where $\operatorname{vec}\left(\mathbf{E}_{n}(t)\right)$ is a vector of spatio-temporal variation $\varepsilon_{n}(s, c, t)$ for all sites s and species c in a given year $t, \mathbf{L}_{\varepsilon n} \mathbf{L}_{\varepsilon n}^{T}$ represents the covariance in spatio-temporal variation in numbers density, and we again define an identical distribution for $\mathbf{E}_{w}(t)$, involving a separate estimate of $\mathbf{L}_{\varepsilon w}$. This spatio-temporal index standardization is useful for generating an index of abundance for each species that has little estimation covariance among years (Thorson 2019b). However, it does not define a probability distribution for a year with no available data (due to no information for intercepts in that year).

2.2 Extending the model to account for species interactions

We next extend this model by defining a probability distribution for population density in year t given estimates in the previous years. To do so, we approximate nonlinear dynamics for species interactions via a first-order Taylor series expansion around its equilibrium, which results in a first-order vector autoregressive model (Ives et al. 2003; Thorson et al. 2017; Certain et al. 2018):

$$
\begin{equation*}
\log (\mathbf{d}(s, t))=\boldsymbol{\alpha}(s)+\mathbf{B} \log (\mathbf{d}(s, t-1))+\cdots \tag{5}
\end{equation*}
$$

where $\boldsymbol{\alpha}(s)$ is a vector of spatially varying and time-invariant intercepts, composed of $\alpha(s, c)$ for each species c, which represents spatial variation in carrying capacity. \mathbf{B} is the species interactions matrix where $b_{c, c^{*}}$ indicates that a 1% change in density for species c^{*} causes a change of $b_{c, c^{*}}$ in per-capita productivity for species c. We parameterize the species-interactions matrix as:

$$
\begin{equation*}
\mathbf{B}=\mathbf{P}+\chi \boldsymbol{\Psi}^{\mathbf{T}} \tag{6}
\end{equation*}
$$

where \mathbf{P} is a diagonal matrix where diagonal element $\rho(c, c)-1$ represents intra-specific density dependence (the degree that population density for species c decreases per-capita
productivity for that species), and $\boldsymbol{\chi} \boldsymbol{\Psi}^{\mathrm{T}}$ represents inter-species density dependence. $\boldsymbol{\chi}$ and $\boldsymbol{\Psi}$ are both C by R matrices, where the user specifies rank R and this controls the number of interaction parameters that must be estimated; other identifiability restrictions must be imposed as R approaches the number of species C, and this parameterization is common in cointegration models used in econometrics (Engle and Granger 1987; Thorson et al. 2017). Importantly, the user-specified rank of species interactions R can range from 0 to C (i.e., $0 \leq R \leq C$), where the rank represents the number of ratio-dependent axes of community regulation arising from species interactions, and where $\chi \boldsymbol{\Psi}^{\mathrm{T}}$ can be defined to have either complex or real eigenvalues (representing dynamics with or without population cycles) depending upon the quality of available data (Thorson et al. 2017).

In addition to approximating species interactions via an autoregressive model, we again include spatial variation (e.g., $\omega_{n}(s, c)$)and spatio-temporal variation (e.g., $\boldsymbol{\varepsilon}_{n}(s, t)$) and also incorporate the impact of an instantaneous fishing mortality rate $\mathbf{f}(t)$ on population density:

$$
\log (\mathbf{d}(s, t))=\boldsymbol{\alpha}+\boldsymbol{\omega}(s)+\mathbf{B} \log (\mathbf{d}(s, t-1))+\boldsymbol{\varepsilon}(s, t)-\mathbf{f}(t)
$$

Solving for $\log (\mathbf{d}(s, t))$ and re-writing as a delta-model then yields:

$$
\begin{gather*}
\log (\mathbf{n}(s, t))=\boldsymbol{\beta}_{n}+\boldsymbol{\omega}_{n}(s)+\sum_{\Delta=0}^{t} \mathbf{B}^{\Delta} \boldsymbol{\varepsilon}_{n}(s, t-\Delta)-\xi \sum_{\Delta=0}^{t} \mathbf{B}^{\Delta} \mathbf{f}(t-\Delta) \tag{8a}\\
\log (\mathbf{w}(s, t))=\boldsymbol{\beta}_{w}+\boldsymbol{\omega}_{w}(s)+\sum_{\Delta=0}^{t} \mathbf{B}^{\Delta} \boldsymbol{\varepsilon}_{w}(s, t-\Delta)-(1-\xi) \sum_{\Delta=0}^{t} \mathbf{B}^{\Delta} \mathbf{f}(t-\Delta) \tag{8b}
\end{gather*}
$$

where species interactions \mathbf{B} are identical between the two components of the delta model, and where ξ determines the degree to which fishing mortality decreases numbers density or biomass-per-individual (we assume $\xi=1$ in the following, but future research could explore the topic further). Terms summing across lag $\Delta, \sum_{\Delta=0}^{t} \mathbf{B}^{\Delta} \boldsymbol{\varepsilon}_{n}(s, t-\Delta)$ and $\sum_{\Delta=0}^{t} \mathbf{B}^{\Delta} \mathbf{f}(t-\Delta)$, represent the
decaying effect of spatio-temporal variation and fishing mortality, respectively, occurring Δ years previous to year t; the contribution of previous spatio-temporal variation and fishing mortality is additive due to our model specification, and this specification results in fast computation relative to other model structures. Fishing mortality rate $\mathbf{f}(t)$ must be specified as data for every species, although future research could extend the model to estimate this as a parameter by fitting to fishery catches. The model can also be extended to include catchability covariates, density covariates, and vessel effects that can be incorporated into VAST (see Thorson (2019b) for a description). Although we do not explore these features here (and they would require further software development to be used in conjunction with estimates of species interactions), we recommend future research to incorporate covariates so that, e.g., dynamics could be driven by downscaled climate projections (Hollowed et al. 2013).

Finally, we calculate biological reference points (BRP) for population abundance and fishing intensity. As BRP for population abundance, we calculate average unfished biomass $b_{0}(c)$ for each species c and envision a scenario in which fisheries managers seek to maintain a population biomass near a proxy for maximum sustainable yield, $b(c) \approx 0.4 b_{0}(c)$, corresponding to 40% of unfished biomass. We use $b_{40 \%}$ as it is used as a proxy biomass target for in other US management regions, e.g., for US West Coast rockfishes (Wetzel et al. 2017), and future studies could specify a different target or expand the model to accommodate other proxy reference points (e.g., Gabriel and Mace 1999). As BRP for fishing intensity, we calculate the corresponding fishing mortality rate $f_{0.4}(c)$ that would result in 40% of unfished biomass if $f_{0.4}(c)$ were continued indefinitely (sensu Holsman et al. 2016b). Given these BRPs, we then calculate stock status as the ratio of fishing mortality or expected biomass in a given year with the associated BRP; see Appendix A for more details regarding computation.

2.3 Parameter estimation

We fit this model using a publicly available package VAST (Thorson and Barnett 2017), release number 3.1.0 (https://github.com/James-Thorson/VAST) within the R statistical environment (R Core Team 2017). This R package has been used in a variety of different stock and ecosystem assessment reports in several marine regions worldwide (Thorson 2019b) but has not previously included features for estimating species interactions B, the impact of fishing mortality $\mathbf{f}(t)$, or biological reference points. Species interactions had previously been explored in several recent spatio-temporal models (Ovaskainen et al. 2017; Thorson et al. 2017; Schliep et al. 2018), but this study is the first to our knowledge to incorporate both species interactions and fishing mortality in a multispecies spatio-temporal model. We argue that this combination of features represents the minimum necessary for a MICE-in-space model.

VAST estimates spatial variation $\boldsymbol{\omega}(s)$ and spatio-temporal variation $\boldsymbol{\varepsilon}(s, t)$ for all species, locations, and times as random effects. Users of VAST specify a number of knots n_{x}, and VAST then uses R package R-INLA (Lindgren and Rue 2013) to generate a triangulated mesh, with vertices at these n_{x} knots as well as additional boundary vertices, where the total number of knots and boundary vertices is n_{s}. VAST then estimates spatial variables at all n_{s} locations, while associating every survey record i with the knot s_{i} closest to it. Similarly, VAST associates every location in a user-specified extrapolation grid with the knot s_{g} closest to it. It then uses these predicted values within the extrapolation grid for all plotting and when calculating derived quantities (see the VAST user manual for more details: https://github.com/James-ThorsonNOAA/VAST/blob/master/manual/VAST model_structure.pdf).

VAST estimates parameters by identifying the values that maximize a log-likelihood function. It estimates several fixed effects as defined previously: species interactions matrix \mathbf{B},
spatial correlations $\mathbf{L}_{\omega n}$, spatio-temporal correlations $\mathbf{L}_{\varepsilon n}$, spatial decorrelation rate κ_{n}, geometric anisotropy \mathbf{H}, residual sampling variation $\sigma^{2}(c)$, numbers-density intercepts $\beta_{n}(c)$ and average-weight $\beta_{w}(c)$ for each species c. To calculate the marginal log-likelihood, it approximates the integral across all random effects using the Laplace approximation (Skaug and Fournier 2006), and specifically integrates across random effects representing spatial variation $\boldsymbol{\omega}(s)$ and spatio-temporal variation $\boldsymbol{\varepsilon}(s, t)$ for all species, locations, and times. The Laplace approximation is implemented using package TMB (Kristensen et al. 2016), which uses automatic differentiation to efficiently calculate the matrix of second derivatives (used in the Laplace approximation) and the gradient of the Laplace approximation (used when maximizing fixed effects). TMB predicts all random effects by maximizing the joint likelihood function given maximum likelihood estimates of fixed effects, and we use the epsilon bias-correction estimator to correct for "retransformation bias" when predicting any derived quantity (e.g., biomass biological reference point $\left.b_{\text {ratio }}(c, t)\right)$ that involves a nonlinear transformation of predicted random effects (Thorson and Kristensen 2016). TMB also applies a generalization of the delta-method to calculate standard errors for all fixed and random effects, as well as all derived quantities (Kass and Steffey 1989).

We note that this MICE-in-space model involves the assumption that the expected survey catches are proportional to local abundance and sample the entire stock. This assumption is analogous to assuming that the catchability coefficient $q=1$, and this assumption (or variants involving a tight prior) are common in stock assessments in the Gulf of Alaska. Future developments of the MICE-in-space model may involve estimating a catchability coefficient, presumably by treating the fishery history as a depletion experiment as this is the primary source of information in biomass-dynamic models (Magnusson and Hilborn 2007). We leave this as a
topic of future development and exploration, but note that our assumptions about catchability result in precise estimates of population scale relative to other model assumptions.

2.4 Case study application

We demonstrate this model via application to data for four commercially important species in the US Gulf of Alaska: Alaska pollock, Pacific cod, Pacific halibut (Hippoglossus stenolepis), arrowtooth flounder (Atheresthes stomias). We fit the model to biomass-sampling data obtained from a bottom trawl survey data from 1982-2015, conducted every $3^{\text {rd }}$ year from 1982-1999 and every $2^{\text {nd }}$ year from 1999 to present day (Von Szalay and Raring 2016). For fishing mortality, we extract the ratio of fishery catches and stock assessment estimates of total biomass, and define $f(c, t)=-\log (1-c(c, t) / b(c, t))$.

We compare model performance for one descriptive model, and four nested models that incorporate density dependence:

1. Index standardization model: As a descriptive model, we fit a standard "index standardization model" (Eq. 2). We include this model to show estimates of abundance patterns for a "saturated" model that lacks the mechanistic detail of other models.
2. Complete density dependence: As a simplified model that includes density dependence and fishing mortality, we specify a model with "complete" density dependence where spatiotemporal variation and fishing mortality in year t has no impact on values in subsequent years.
3. Same density dependence: Next, we include a model estimating the same degree of density dependence for all species while including fishing mortality, but without estimating interactions.
4. Different density dependence: We also include a more complex version of model \#3 but where density-dependence varies among species, while including fishing mortality but still ignoring interactions.
5. Species interactions: Finally, we include a model with community-level regulation $(\mathbf{B}=$ $\mathbf{P}+\boldsymbol{\chi} \boldsymbol{\Psi}^{\mathrm{T}}$, where $\operatorname{rank}(\boldsymbol{\chi})=1$ and intra-specific density dependence is identical across species) and fishing mortality. This model is useful to show whether species interactions improves model fit relative to ignoring interactions among species.

Models 2-5 are nested and all are intended to bridge continuously from description (model \#1) to mechanistic (model \#5); see Appendix B for more details.

To visualize results, we show log-biomass density at each modeled location and each species:

$$
\begin{align*}
\log (\hat{\mathbf{d}}(s, t))= & \left\{\boldsymbol{\beta}_{n}+\boldsymbol{\omega}_{n}(s)+\boldsymbol{\varepsilon}_{n}(s, t)\right\}+\left\{\boldsymbol{\beta}_{w}+\boldsymbol{\omega}_{w}(s)+\boldsymbol{\varepsilon}_{w}(s, t)\right\} \tag{12}\\
& -\left\{\sum_{\Delta=0}^{t} \mathbf{B}^{\Delta} \mathbf{f}(t-\Delta)\right\}
\end{align*}
$$

and where we calculate unfished biomass density $\hat{\mathbf{d}}\left(s, t_{0}\right)$ by fixing $f\left(c, t_{0}\right)=0$. We recommend future research incorporating dynamic habitat variables (e.g., bottom temperature) as physical drivers of changing productivity, as well as skill-testing for models with and without covariates (Tommasi et al. 2017; Thorson 2019b) but do not address the topic further here.

2.5 Simulation experiment

We also explore model performance using a simulation experiment conditioned upon the most parsimonious model fitted to data for these four species in the Gulf of Alaska. To do so, we (1) generate 100 simulated data sets using a "bootstrap simulator" available within the VAST R package, (2) fit a modified model to each simulated data set, and compare estimates from step \#2 with known values from step \#1. The bootstrap simulator uses the specified model structure and
estimated values for all fixed effects, but generates new values for all random effects ($\boldsymbol{\omega}_{n}(s)$, $\boldsymbol{\varepsilon}_{n}(s, t), \boldsymbol{\omega}_{w}(s)$, and $\left.\boldsymbol{\varepsilon}_{w}(s, t)\right)$ and then generates new values for biomass-sampling data (b) given those simulated values for random effects. In doing so, it generates new data from the same locations, with the same samples sizes and timing as the original data set, and therefore conditions upon both the estimated parameters (fixed effects) and true sample sizes (timing and frequency of sampling) that is available in the real world while generating new spatial configurations (random effects) for the interacting species.

For each simulation replicate, we fit a reduced model comprised of data for only two species (arrowtooth and Alaska pollock) and operating at a coarse spatial resolution (50 knots) relative to the resolution used in the bootstrap simulator (100 knots). We do this for two reasons. First, empirical studies in the real-world will always involve fewer interacting species than the "true" number of interacting species operating in nature, and will also involve a reduced spatial resolution relative to the spatial scale operating in nature. Therefore, reducing the number of species and spatial resolution in the estimation model relative to the operating model ensures that both of these potential sources of bias are present in our simulation experiment, although both sources of bias may be stronger or weaker for other data-generating processes. Second, reducing the spatial resolution and number of species increases the speed of parameter estimation, thereby allowing for an efficient simulation experiment. We choose arrowtooth and Alaska pollock because diet analysis has demonstrated strong predation of arrowtooth upon juvenile Alaska pollock (Gaichas et al. 2015; Spies et al. 2017; Livingston et al. 2017). We then evaluate model fit by comparing estimated and true values for the species interaction matrix \mathbf{B} as well as estimates of the fishing mortality biological reference point $\mathbf{f}_{0.4}$. Based on previous research, we
expect that the sign of species interactions should be correctly estimated in the majority of simulation replicates (Thorson et al. 2017; Certain et al. 2018).

3. Results

Fitting five spatio-temporal models with varying structural complexity to data for four commercial species in the Gulf of Alaska shows that these models estimate similar patterns of biomass (Fig. 1). Specifically, pollock has its highest biomass in 1989 before declining to low biomass in 2001/2007 when fishing mortality rates are relatively high, and Pacific cod similarly reaches its lowest biomass in 2001 before recovering somewhat despite elevated fishing mortality rates. By contrast, arrowtooth flounder attains high biomass in 1989-1992 and again in 2003-2005 before declining in recent years. The index-standardization and "perfect density dependence" models only provides estimates of biomass in years with available data, while the other models interpolate biomass between years with sampling data, although uncertainty intervals are wider for years without sampling data (e.g., see the width of uncertainty intervals for arrowtooth flounder in unsampled years 1990/1991 relative to sampled years 1989/1992).

Three MICE-in-space models estimate biological reference points, while "indexstandardization" and "complete density dependence" models do not. Despite estimating similar patterns in population biomass, these three MICE-in-space models provide different estimates of the fishing mortality rate expected to attain 40% of unfished biomass ($\mathbf{f}_{0.4}$, left column in Fig. 2). The "same density dependence" model by design estimates the same $\mathbf{f}_{0.4}$ for all species, while the "species interactions" model estimates a relatively high $\mathbf{f}_{0.4}$ for pollock and lower $\mathbf{f}_{0.4}$ for other species. The "different density dependence" model also estimates relatively large standard errors for $\mathbf{f}_{0.4}$ (broad distributions in left column Fig. 2). Differences in $\mathbf{b}_{\text {target }}$ estimates for each species are much smaller than differences in $\mathbf{f}_{0.4}$ among models (right column of Fig. 2).

Model selection using the Akaike Information Criterion (AIC) suggests that "species interactions" model is the most parsimonious model (Table 1), although the "different density dependence" model also has strong support $(\triangle A I C=1.0)$. The AIC-selected "species interactions" model includes four interactions among species that are significant based on a twosided Wald test at $p<0.05$, representing a negative impact of pollock on per-capita productivity of all other species as well as a positive impact of Pacific halibut on productivity of arrowtooth flounder (see Appendix C for these results for the "different density dependence model"). Inspecting estimates of population density from the AIC-selected model with species interactions (Fig. 3), we see, e.g., that arrowtooth flounder has increased in density primarily inshore from Kodiak Island. Similarly, biomass of pollock in 1984 and 1995 is concentrated offshore from Kodiak Island, and the low biomass in 2005 is due in part to decreased density southwest of Kodiak in that period. All three MICE-in-space models that estimate biological reference points show similar trends in stock status, but differ in scale particularly for Pacific halibut and walleye Pollock, due primarily to differences in estimated biological reference points (Fig. 4). The AICselected "species interactions" model shows that fishing mortality is above the estimate of $f_{0.4}$ for Pacific cod from 2011-2015, while the "different density dependence" model (which also has substantial support) shows fishing mortality slightly below $f_{0.4}$ for those same years; both models estimate that Pacific cod biomass was below 40% of b_{0} in 2001 and was approaching that level again by 2015 (Fig. 4). However, stock status is not perfectly correlated between fishing mortality and biomass reference points due to short-term environmental variation, interactions, and other effects that can, e.g., allow biomass to remain above 40% of b_{0} despite fishing above $f_{0.4}$. These same factors can cause biomass to exceed average unfished biomass
\mathbf{b}_{0} for several years, and arrowtooth flounder spends nearly half of the modeled years above this biomass due to process errors and a close-to-zero fishing mortality rate (Fig. 4 top-left panel).

Last, we include results from a simulation experiment exploring the ability of a MICE-inspace model to correctly estimate species interactions given plausible forms of model misspecification, i.e., (1) ignoring species that have non-negligible interactions with modeled species, and (2) modeling dynamics at a coarser spatial resolution than the resolution of biological interactions. To visualize this simulation design, we compare true and estimated population density for a single replicates of the simulation experiment (Fig. 5). This shows that the model can accurately capture spatial variation in unfished population density (i.e., comparing $1^{\text {st }}$ and $2^{\text {nd }}$ rows of Fig. 5), as well as density in the final year ($3^{\text {rd }}$ and $4^{\text {th }}$ rows of Fig. 5), despite only fitting biomass for two of the four simulated species and fitting density at a coarser spatial scale than is used when simulating data. When summarizing across all simulation replicates, the MICE-in-space model is able to estimate the negative impact of pollock on arrowtooth productivity (Fig. 6A, top-right panel) and the negative impact of arrowtooth on pollock productivity (Fig. 6A, bottom-left panel) in nearly all simulation replicates, although these estimates appear to be biased towards more negative numbers (stronger interactions). Similarly, the majority of simulation replicates estimate a negative impact of arrowtooth on pollock productivity (Fig. 6A, bottom-left panel), and density-dependence (Fig. 6A diagonal panels) are approximately unbiased. The bias in interactions translates to some bias in estimates of fishing mortality reference point for arrowtooth flounder (Fig. 6B top panel), where the MICE-in-space model exhibits a positive bias in $f_{0.4}$ for arrowtooth flounder. However, the majority of simulation replicates correctly identify that arrowtooth has a lower $f_{0.4}$ than pollock. We therefore conclude that, given the quantity and frequency of available data and conditioning the
simulation experiment upon estimates from the "species interactions" model, the MICE-in-space model is able to estimate broad qualitative differences in productivity among species as well as the likely sign of species interactions. However, caution should be exercised when interpreting the exact value for fishing mortality targets based on this multispecies model.

4. Discussion

In this paper, we have developed the first multispecies spatio-temporal model that includes species interactions, fishing mortality, and statistical estimates of species-specific biological reference points commonly used for fisheries management. We have showed that a MICE-inspace can function as an operating model within a simulation study, and this simulation experiment suggests that the model can accurately estimate species interactions even in the presence of likely forms of model mis-specification (i.e., missing fine-scale dynamics and modeling only a subset of interacting species). Finally, a case-study demonstration involving four species in the Gulf of Alaska has showed that incorporating species interactions is more parsimonious than assuming independent dynamics among species, although an alternative model with separate density dependence for each species but no interactions had similar support $(\triangle A I C=1.0)$. Various configurations of the model estimated similar trends in biomass and biomass reference points but differed more in estimated fishing mortality reference points, and this is in-line with other previous multi-species model comparisons (Kinzey and Punt 2009; Holsman et al. 2016b).

The species interactions estimated from MICE-in-space contrast with previous analyses of trophic relationships based on diet analyses in the Gulf of Alaska. Models that include diet data suggest that arrowtooth flounder, cod, and halibut account for the majority of predation upon pollock (Gaichas et al. 2015) and therefore predict that these stocks have a negative impact on
pollock productivity (A'mar et al. 2010; Van Kirk et al. 2010). However, the MICE-in-space developed here estimated no significant impact of either arrowtooth flounder, cod, or halibut on pollock productivity. Previous ecosystem models have also suggested that increased pollock production would lead to increased halibut production (Gaichas et al. 2015), in contrast with the negative impact of pollock on halibut estimated here.

Diet data represent the integrated outcome of behavioral and spatial processes that underlie variation in consumption across habitats, years, species, and individuals. Diet studies therefore provide valuable information regarding trophic interactions that structure marine ecosystems (e.g., Livingston et al. 2017). However, estimates of predation impacts on species productivity will typically depend upon structural modelling assumptions, such that models may differ about the magnitude or sign of species interactions even when fitting to diet data (Kaplan et al. 2018; Reum et al. 2019). Finally, non-consumptive processes may cause diet analyses to misrepresent the cumulative impact of changing biomass for one species on per-capita productivity for other species. For example, behavioral plasticity can reduce foraging rates in many species (e.g., Heithaus et al. 2007), resulting in a decrease in productivity (due to decreased weight-at-age) that exceeds that predicted due to a direct change in natural mortality measured by predator stomach contents. Comparing results from multiple ecosystem models can help to evaluate the sensitivity of estimated ecosystem properties to structural assumptions and multiple data sources. We therefore support ongoing comparative research using multiple ecological models when evaluating climate or human-mediated changes on marine ecosystems (Olsen et al. 2016; Kaplan et al. 2018; Spence et al. 2018; Tittensor et al. 2018; Pope et al. 2019), and note that the MICE-in-space model could fill a useful niche in these model portfolios.

Given the differences in estimated interactions between the MICE-in-space model and previous ecosystem models using diet-data, we do not recommend using the MICE-in-space model for analyzing harvest trade-offs between species in the Gulf of Alaska (e.g., Walters et al. 2005; Moffitt et al. 2016) until these differences have been explained and addressed. However, we note that the MICE-in-space model estimates fine-scaled variation in multispecies density, and also discriminates species interactions from the covariance caused by different responses to shared but unmeasured environmental drivers. We therefore believe that the MICE-in-space model is ready for use for several real-world fisheries management activities including projection of localized climate impacts, optimization of survey designs, designation of essential fish habitat, and multi-model inference regarding fishery status and productivity. We discuss each of these in detail below.

4.1 Projecting climate impacts

Globally, marine heatwaves of anomalously warm conditions are increasing in frequency and strength (Hobday et al. 2016a). Climate-driven changes to the survival and distribution of species are have also been well documented (Pinsky et al. 2013; Alabia et al. 2018; Morley et al. 2018). Rapid reorganization of food webs, novel interactions, and shifting spatial distributions confound traditional assessment methods that do not consider unidirectional change or nonstationarity in environmental drivers of mortality, selectivity, and growth (Skern-Mauritzen et al. 2015; Pinsky et al. 2018). As such, future short-term forecasts and long-term projections of many fish stocks will likely require models that include climate-driven changes to spatial distributions and species interactions (Deyle et al. 2016; Hobday et al. 2016b, 2018; Tommasi et al. 2017). Spatially-explicit MICE models such as the one presented here represent a potential tool for managing fisheries under changing conditions, as they can be used to forecast changes in
spatial distribution while accounting for species interactions (Howell and Filin 2014). Presumably, skillful forecasting over longer time-horizons (e.g., >10 years) will require including incorporating physiological and other mechanistic processes (Hollowed et al. 2009; Payne et al. 2017); we recommend future research to explore including density covariates representing changes in thermal niche, as well as the effect of regional oceanographic variables (Thorson 2019) within MICE-in-space models.

4.2 Optimizing survey designs

In addition to potential conflict between governments (Pinsky et al. 2018), changing spatial distributions due to climate change complicates fisheries management because historical survey operations and methods may no longer cover the range of important fish populations (Karp et al. In press). For example, walleye pollock and Pacific cod in the Bering Sea are enormously productive and valuable fisheries, and both shifted northward out of the historically surveyed area between 2010 and 2017 (Stevenson and Lauth 2019). Fisheries science and management agencies therefore face a difficult task of funding existing resource surveys versus developing new surveys in response to changes in resource distribution and productivity. Existing fisheryindependent surveys are often very expensive (e.g., approximately $\$ 1$ million US for vessel time alone for the 130 bottom trawl stations in the northern Bering Sea in 2017) and agencies face trade-offs between decreased survey sample sizes or frequency in existing surveys vs. extending surveys to new areas. The trade-off between maintaining existing surveys and developing new ones would ideally be informed by scientific methods that condition upon available data and incorporate known and/or hypothesized forms of spatial, temporal, and sampling variation (e.g., Reich et al. 2018). Similarly, changing ocean use (e.g., offshore energy development) can impact survey design, and it would be helpful to understand likely impacts of these
developments on existing survey performance. We therefore recommend future research using a MICE-in-space model for survey evaluation and optimization, whereby a MICE-in-space operating model is fitted to available historical data for interacting species (given their historical fishing mortality rates) to generate simulated sampling data under alternative potential sampling designs. Each simulated data set could then be fitted by each sampling design, and the average performance (e.g., standard error when estimating an index of abundance, or the strength of species interactions) could be calculated across all simulation replicates. This method would represent an objective process to evaluate alternative configurations of limited sampling effort, and could presumably result in more efficient use of limited agency sampling, although it would be unlikely to capture the additional value of sampling data under environmental conditions that have not previously been observed.

4.3 Designation of essential fish habitat

Fisheries managers use a wide array of spatial management tools in addition to regulations on fishery catch, effort, timing, and gear. In the US, fisheries management councils are required to update designations of essential fish habitat (EFH) and habitat areas of particular concern (HAPC) every five years. These designations can be done using species distribution models, SDMs (Rooper et al. 2016), and the MICE-in-space is a generalization of these models that additionally includes fishery harvest, species co-occurrence, and biological interactions. We note that the US national EFH program defines four levels of EFH model (NMFS 2010; Lederhouse et al. 2017), ranging from low (Levels 1-2: population distribution and density) to high (Levels 3-4: spatial variation in demographic rates and overall productivity). Within this classification, a MICE-in-space reconstructs spatial variation in productivity from survey biomass and fishery removals, and therefore represents the highest-level basis for designating

EFH. Unlike previous EFH models, however, the MICE-in-space estimates temporal variability in species distribution, density, and productivity, driven by both species interactions, fishing, and residual spatio-temporal variation. Temporal variability has not been extensively addressed in EFH models or processes in the US, although we note that EFH-designations are already updated every 5 years and could be designated using five-year forecasts of productivity given forecasted environmental conditions. However, whether this time-varying designation of EFH and HAPC is acceptable to stakeholders and fisheries managers will of course depend upon many local and non-technical considerations including: available human resources; management priorities; and previous regional approaches to EFH designation (Copps et al. 2007).

4.4 Multi-model inference regarding status and productivity

Non-spatial climate-enhanced multispecies models (Holsman et al. 2016b), and climateenhanced single-species models (Spencer et al. 2016; Barbeaux et al. 2017) are increasingly evaluated for Alaskan stocks impacted by anomalously warm conditions in the North Pacific. Balancing model complexity and mechanistic detail with computational demand, data compilation, and ease of interpretation of results is an ongoing challenge, especially for models that require multiple data sources and types (Plagányi et al. 2011). Stepwise hierarchical selection approaches for narrowing the focal components for forecasting risk can help balance demands and costs in computing, and identify key attributes to be evaluated in MICE models, which are intermediate in complexity but represent highly quantitative approaches (Hobday et al. 2011; Holsman et al. 2017). Shifting spatial distributions and changing mortality rates (e.g., through predation or starvation) are often confounded in ecosystem models, and simultaneously addressing these two issues is a key goal in current ecosystem models in regions including the Bering Sea (e.g., Spencer et al. 2016). Underlying model structure and implicit versus explicit
treatment of environmental or trophic changes to a population becomes extremely important when projecting models for management advice, especially on longer timescales (Lotze et al. 2019). Forecasting distribution and productivity using a wide range of models with different structural assumptions (a.k.a. multi-model inference) can be used to identify sensitivities in model specification and propagation of error (Kaplan et al. 2018; Spence et al. 2018; Pope et al. 2019). Examples of this multi-model approach to forecasting climate impacts include FISH-MIP (Hobday et al. 2016b; Tittensor et al. 2018) and the Alaska Climate Change Integrated Modeling project (ACLIM; Hollowed et al. submitted). We recommend further research regarding MICE-in-space models when used within an ensemble of other models that have less spatial resolution but more detailed submodels for population demography (e.g., age or size structure) or physical drivers (e.g., linked to regional biophysical models, e.g., Hermann et al. (In press)).

4.5 Future research

We recommend several avenues for future research regarding MICE-in-space, including: (1) incorporating prior information regarding species interactions; (2) fitting to fishery catches; (3) incorporating density covariates; and (4) comparison with alternative ecosystem models.

1. Prior information regarding species interactions: In this paper, we have freely estimated species interactions given information in survey data. However, analysts could seek to incorporate prior information (e.g., from diet data or assumptions about bioenergetics), and we envision two ways to do so. First, analysts could "hardwire" the interaction matrix, either eliminating some interactions a priori (e.g., Rochet et al. 2011) or such that it matches specified values for single-species intrinsic growth rates and per-capita consumption rates. Alternatively, analysts might specify a Bayesian prior on these values while using available
data. The latter would require additional statistical research, but would allow analysts to integrate diet analyses while retaining the computational flexibility of the current study.
2. Fitting to fishery catches: In this paper, we have pre-specified a fishing mortality rate for each species that varies among years but is constant across space, and this has driven interannual variation in status relative to estimated biological reference points. We again see two ways to relax this assumption. First, analysts could specify spatial variation in fishing mortality, such that forecasts incorporate historical data regarding the spatial distribution of fishing effort. Alternatively, analysts could specify spatial variation in fishery catch or landings (obtained from fishery observers or other reporting). Specifying fishery catch for each species, location, and year would require estimating fishing mortality rates as a model parameter, but this specification would still be "separable" and previous exploration suggests that this could be done while still being computationally feasible. Neither of these options are currently available in the R package VAST used here, but both could be added during future developments.
3. Incorporating density covariates: Forecasting climate impacts is a growing concern for identifying suitable management strategies (Miller et al. 2010; Holsman et al. 2019a). Covariates explaining historical variation in density will improve predictive skill for shortterm forecasts in some cases and not others (Hobday et al. 2018; Thorson 2019a), so we encourage future skill-testing to measure the potential benefits of incorporating multi-species interactions, density covariates, and species associations for forecasting distribution shifts over short (<3 year) or longer time-horizons.
4. Comparison with alternative ecosystem models: Perhaps most importantly, we recommend detailed, side-by-side comparison of MICE-in-space and other ecosystem models. These
comparisons are vital to identify the relative computational and human-resource costs of these different models, as well as identify when models provide different advice (Kaplan et al. 2018; Pope et al. 2019). However, this topic would require substantial additional effort and is an obvious topic for future research.

The MICE-in-space is publicly available in the R package VAST, which is already used for stock assessment and ecosystem status reports in the North Pacific (Thorson 2019b). We anticipate that public access and ongoing documentation for this implementation of a "MICE-in-space" model will facilitate future model comparisons. We hope that it will facilitate the use of multispecies models for spatial management including climate forecasts, survey optimization, and EFH designation.

Data Availability Statement

All data used are publicly available and hosted by the Alaska Fisheries Science Center. Survey data can be accessed online at http://www.afsc.noaa.gov/RACE/groundfish/survey data/data.htm and records of fishing mortality are online at
https://www.afsc.noaa.gov/REFM/Stocks/SARA/sara_access.php. The R package VAST is available at https://github.com/James-Thorson/VAST/.

Acknowledgements

We thank K. Aydin for discussions while developing ideas in this project, and I. Kaplan, K. Aydin, and two anonymous reviewers for comments on a previous draft. We also thank K. Kristensen and the developers of Template Model Builder, the many people who have contributed to the development and testing of package VAST, and acknowledge support from a grant \#15-027 from the Habitat Assessment Improvement Plan to develop and document the earlier package SpatialDeltaGLMM. Finally, we thank the many scientists who have contributed
to the Gulf of Alaska Bottom Trawl Survey, which is an invaluable resource for studying that region.

References

Alabia, I.D., García Molinos, J., Saitoh, S.-I., Hirawake, T., Hirata, T. and Mueter, F.J. (2018) Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Diversity and Distributions, 1-15. doi:10.1111/ddi. 12788.
A'mar, Z.T., Punt, A.E. and Dorn, M.W. (2010) Incorporating ecosystem forcing through predation into a management strategy evaluation for the Gulf of Alaska walleye pollock (Theragra chalcogramma) fishery. Fisheries Research 102, 98-114. doi:10.1016/j.fishres.2009.10.014.
Barbeaux, S., Aydin, K., Fissel, B., et al. (2017) Assessment of the Pacific cod stock in the Gulf of Alaska. NPFMC Gulf of Alaska SAFE, 183-326.
Begley, J. and Howell, D. (2004) An overview of Gadget, the globally applicable area-disaggregated general ecosystem toolbox.ICES.
Berger, A.M., Goethel, D.R., Lynch, P.D., Quinn, T., Mormede, S., McKenzie, J. and Dunn, A. (2017) Space oddity: The mission for spatial integration. Canadian Journal of Fisheries and Aquatic Sciences 74, 1698-1716. doi:10.1139/cjfas-2017-0150.
Burnham, K.P. and Anderson, D. (2002) Model Selection and Multi-Model Inference, 2nd edn. Springer, New York.
Certain, G., Barraquand, F. and Gårdmark, A. (2018) How do MAR(1) models cope with hidden nonlinearities in ecological dynamics? Methods in Ecology and Evolution 9, 1975-1995. doi:10.1111/2041-210X.13021.
Christensen, V. and Walters, C.J. (2004) Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 172, 109-139. doi:10.1016/j.ecolmodel.2003.09.003.
Collie, J.S., Botsford, L.W., Hastings, A., et al. (2016) Ecosystem models for fisheries management: Finding the sweet spot. Fish and Fisheries 17, 101-125. doi:10.1111/faf.12093.
Collie, J.S. and Gislason, H. (2001) Biological reference points for fish stocks in a multispecies context. Canadian Journal of Fisheries and Aquatic Sciences 58, 2167-2176.
Copps, S.L., Yoklavich, M.M., Parkes, G.B., et al. (2007) Applying marine habitat data to fishery management on the US West Coast: Initiating a policy-science feedback loop. Mapping the seafloor for habitat characterization. Geol. Assoc. Can. Spec. Pap 47, 451-462.
Cressie, N. and Wikle, C.K. (2011) Statistics for spatio-temporal data. John Wiley \& Sons, Hoboken, New Jersey.
Deyle, E.R., May, R.M., Munch, S.B. and Sugihara, G. (2016) Tracking and forecasting ecosystem interactions in real time. Proceedings of the Royal Society B: Biological Sciences 283. doi:10.1098/rspb.2015.2258.
Dolan, T.E., Patrick, W.S. and Link, J.S. (2016) Delineating the continuum of marine ecosystem-based management: a US fisheries reference point perspective. ICES Journal of Marine Science: Journal du Conseil 73, 1042-1050. doi:10.1093/icesjms/fsv242.
Dolder, P.J., Thorson, J.T. and Minto, C. (2018) Spatial separation of catches in highly mixed fisheries. Scientific Reports 8, 13886. doi:10.1038/s41598-018-31881-w.
Engle, R.F. and Granger, C.W. (1987) Co-integration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, 251-276.
Foster, S.D. and Bravington, M.V. (2013) A Poisson-Gamma model for analysis of ecological nonnegative continuous data. Environmental and Ecological Statistics 20, 533-552. doi:10.1007/s10651-012-0233-0.
Fu, C., Olsen, N., Taylor, N., et al. (2017) Spatial and temporal dynamics of predator-prey species interactions off western Canada. ICES Journal of Marine Science 74, 2107-2119. doi:10.1093/icesjms/fsx056.

Fuglstad, G.-A., Lindgren, F., Simpson, D. and Rue, H. avard (2015) Exploring a new class of nonstationary spatial Gaussian random fields with varying local anisotropy. Statistica Sinica, 115133.

Fulton, E.A., Link, J.S., Kaplan, I.C., et al. (2011) Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish and Fisheries 12, 171-188. doi:10.1111/j.14672979.2011.00412.x.

Gabriel, W.L. and Mace, P.M. (1999) A review of biological reference points in the context of the precautionary approach. In: Proceedings of the fifth national NMFS stock assessment workshop: providing scientific advice to implement the precautionary approach under the MagnusonStevens fishery conservation and management act. NOAA Tech Memo NMFS-F/SPO-40. pp 3445.

Gaichas, Aydin, K. and Francis, R.C. (2015) Wasp waist or beer belly? Modeling food web structure and energetic control in Alaskan marine ecosystems, with implications for fishing and environmental forcing. Progress in Oceanography 138, 1-17. doi:10.1016/j.pocean.2015.09.010.
Gaichas, S.K., Aydin, K.Y. and Francis, R.C. (2010) Using food web model results to inform stock assessment estimates of mortality and production for ecosystem-based fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 67, 1490-1506. doi:10.1139/F10-071.
Heithaus, M.R., Frid, A., Wirsing, A.J., et al. (2007) State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem. Journal of Animal Ecology 76, 837-844. doi:10.1111/j.1365-2656.2007.01260.x.
Hermann, A.J., Gibson, G.A., Cheng, W., et al. (In press) Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES Journal of Marine Science. doi:10.1093/icesjms/fsz043.
Hobday, A.J., Alexander, L. V., Perkins, S.E., et al. (2016a) A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141, 227-238. doi:10.1016/j.pocean.2015.12.014.
Hobday, A.J., Cochrane, K., Downey-Breedt, N., et al. (2016b) Planning adaptation to climate change in fast-warming marine regions with seafood-dependent coastal communities. Reviews in Fish Biology and Fisheries 26, 249-264. doi:10.1007/s11160-016-9419-0.
Hobday, A.J., Smith, A.D.M., Stobutzki, I.C., et al. (2011) Ecological risk assessment for the effects of fishing. Fisheries Research 108, 372-384. doi:10.1016/j.fishres.2011.01.013.
Hobday, A.J., Spillman, C.M., Eveson, J.P., Hartog, J.R., Zhang, X. and Brodie, S. (2018) A Framework for Combining Seasonal Forecasts and Climate Projections to Aid Risk Management for Fisheries and Aquaculture. Frontiers in Marine Science 5, 1-9. doi:10.3389/fmars.2018.00137.
Hollowed, A. (2000) Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? ICES Journal of Marine Science 57, 707-719. doi:10.1006/jmsc.2000.0734.
Hollowed, A.B., Barange, M., Beamish, R.J., et al. (2013) Projected impacts of climate change on marine fish and fisheries. ICES Journal of Marine Science 70, 1023-1037. doi:10.1093/icesjms/fst081.
Hollowed, A.B., Bond, N.A., Wilderbuer, T.K., et al. (2009) A framework for modelling fish and shellfish responses to future climate change. ICES Journal of Marine Science 66, 1584-1594. doi:10.1093/icesjms/fsp057.
Holsman, K., Samhouri, J., Cook, G., et al. (2017) An ecosystem-based approach to marine risk assessment. Ecosystem Health and Sustainability 3, e01256. doi:10.1002/ehs2.1256.
Holsman, K.K., Hazen, E.L., Haynie, A., et al. (2019a) Towards climate resiliency in fisheries management. ICES Journal of Marine Science. doi:10.1093/icesjms/fsz031.
Holsman, K.K., Ianelli, J., Aydin, K., Punt, A.E. and Moffitt, E.A. (2016b) A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species
climate-enhanced stock assessment models. Deep Sea Research Part II: Topical Studies in Oceanography. doi:10.1016/j.dsr2.2015.08.001.
Howell, D. and Filin, A.A. (2014) Modelling the likely impacts of climate-driven changes in cod-capelin overlap in the Barents Sea. ICES Journal of Marine Science 71, 72-80. doi:10.1093/icesjms/fst172.
Hunsicker, M.E., Ciannelli, L., Bailey, K.M., et al. (2011) Functional responses and scaling in predatorprey interactions of marine fishes: contemporary issues and emerging concepts. Ecology Letters 14, 1288-1299. doi:10.1111/j.1461-0248.2011.01696.x.
Ives, A.R., Dennis, B., Cottingham, K.L. and Carpenter, S.R. (2003) Estimating community stability and ecological interactions from time-series data. Ecological monographs 73, 301-330.
Kaplan, I.C., Francis, T.B., Punt, A.E., et al. (2018) A multi-model approach to understanding the role of Pacific sardine in the California Current food web. Marine Ecology Progress Series.
Karp, M.A., Peterson, J.O., Lynch, P.D., et al. (In press) Accounting for shifting distributions and changing productivity in the development of scientific advice for fishery management. ICES Journal of Marine Science. doi:10.1093/icesjms/fsz048.
Kass, R.E. and Steffey, D. (1989) Approximate bayesian inference in conditionally independent hierarchical models (parametric empirical bayes models). Journal of the American Statistical Association 84, 717-726. doi:10.2307/2289653.
Kempf, A., Huse, G., Dingsør, G., Floeter, J. and Temming, A. (2010) The importance of overlap predicting North Sea cod recovery with a multi species fisheries assessment model. ICES Journal of Marine Science 67, 1989-1997.
Kinzey, D. and Punt, A.E. (2009) Multispecies and Single-Species Models of Fish Population Dynamics: Comparing Parameter Estimates. Natural Resource Modeling 22, 67-104. doi:10.1111/j.19397445.2008.00030.x.

Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H. and Bell, B.M. (2016) TMB: Automatic Differentiation and Laplace Approximation. Journal of Statistical Software 70, 1-21. doi:10.18637/jss.v070.i05.
Kristensen, K., Thygesen, U.H., Andersen, K.H. and Beyer, J.E. (2014) Estimating spatio-temporal dynamics of size-structured populations. Canadian Journal of Fisheries and Aquatic Sciences 71, 326-336. doi:10.1139/cjfas-2013-0151.
Lassen, H., Pedersen, S.A., Frost, H. and Hoff, A. (2013) Fishery management advice with ecosystem considerations. ICES Journal of Marine Science 70, 471-479. doi:10.1093/icesjms/fss208.
Lindgren, F. and Rue, H. (2013) Bayesian spatial and spatiotemporal modelling with r-inla. Journal of Statistical Software.
Livingston, P.A., Aydin, K., Buckley, T.W., Lang, G.M., Yang, M.-S. and Miller, B.S. (2017) Quantifying food web interactions in the North Pacific - a data-based approach. Environmental Biology of Fishes 100, 443-470. doi:10.1007/s10641-017-0587-0.
Lotze, H.K., Tittensor, D.P., Bryndum-Buchholz, A., et al. (2019) Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences 116, 12907-12912. doi:10.1073/pnas.1900194116.
Mackinson, S., Platts, M., Garcia, C. and Lynam, C. (2018) Evaluating the fishery and ecological consequences of the proposed North Sea multi-annual plan. PLOS ONE 13, e0190015. doi:10.1371/journal.pone.0190015.
Magnusson, A. and Hilborn, R. (2007) What makes fisheries data informative? Fish and Fisheries 8, 337358.

Magnusson, A., Punt, A.E. and Hilborn, R. (2013) Measuring uncertainty in fisheries stock assessment: the delta method, bootstrap, and MCMC. Fish and Fisheries 14, 325-342.
Marshall, K.N., Duffy-Anderson, J.T., Ward, E.J., Anderson, S.C., Hunsicker, M.E. and Williams, B.C. (2019) Long-term trends in ichthyoplankton assemblage structure, biodiversity, and synchrony in the

Gulf of Alaska and their relationships to climate. Progress in Oceanography 170, 134-145. doi:10.1016/j.pocean.2018.11.002.
Miller, K., Charles, A., Barange, M., et al. (2010) Climate change, uncertainty, and resilient fisheries: Institutional responses through integrative science. Progress in Oceanography 87, 338-346. doi:10.1016/j.pocean.2010.09.014.
Moffitt, E.A., Punt, A.E., Holsman, K., Aydin, K.Y., lanelli, J.N. and Ortiz, I. (2016) Moving towards ecosystem-based fisheries management: Options for parameterizing multi-species biological reference points. Deep Sea Research Part II: Topical Studies in Oceanography 134, 350-359. doi:10.1016/j.dsr2.2015.08.002.
Morley, J.W., Selden, R.L., Latour, R.J., Frölicher, T.L., Seagraves, R.J. and Pinsky, M.L. (2018) Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13, 1-28. doi:10.1371/journal.pone.0196127.
Olsen, E., Fay, G., Gaichas, S., Gamble, R., Lucey, S. and Link, J.S. (2016) Ecosystem Model Skill Assessment. Yes We Can! PLOS ONE 11, e0146467. doi:10.1371/journal.pone.0146467.
Ortiz, I., Aydin, K., Hermann, A.J., et al. (2016) Climate to fish: Synthesizing field work, data and models in a 39-year retrospective analysis of seasonal processes on the eastern Bering Sea shelf and slope. Deep-Sea Research Part II: Topical Studies in Oceanography 134, 390-412. doi:10.1016/j.dsr2.2016.07.009.
Ovaskainen, O., Tikhonov, G., Dunson, D., Grøtan, V., Engen, S., Sæther, B.-E. and Abrego, N. (2017) How are species interactions structured in species-rich communities? A new method for analysing time-series data. Proc. R. Soc. B 284, 20170768. doi:10.1098/rspb.2017.0768.
Payne, M.R., Hobday, A.J., MacKenzie, B.R., et al. (2017) Lessons from the First Generation of Marine Ecological Forecast Products. Frontiers in Marine Science 4. doi:10.3389/fmars.2017.00289.
Pikitch, E.K., Rountos, K.J., Essington, T.E., et al. (2014) The global contribution of forage fish to marine fisheries and ecosystems. Fish and Fisheries 15, 43-64. doi:10.1111/faf.12004.
Pinsky, M.L., Worm, B., Fogarty, M.J., Sarmiento, J.L. and Levin, S.A. (2013) Marine taxa track local climate velocities. Science 341, 1239-1242. doi:10.1126/science. 1239352.
Plagányi, É.E. (2007) Models for an ecosystem approach to fisheries. Food \& Agriculture Org.
Plagányi, É.E., Bell, J.D., Bustamante, R.H., et al. (2011) Modelling climate-change effects on Australian and Pacific aquatic ecosystems: a review of analytical tools and management implications. Marine and Freshwater Research 62, 1132-1147. doi:10.1071/MF10279.
Plagányi, É.E. and Butterworth, D.S. (2012) The Scotia Sea krill fishery and its possible impacts on dependent predators: Modeling localized depletion of prey. Ecological Applications 22, 748-761. doi:10.1890/11-0441.1.
Plagányi, É.E., Punt, A.E., Hillary, R., et al. (2014) Multispecies fisheries management and conservation: Tactical applications using models of intermediate complexity. Fish and Fisheries 15, 1-22. doi:10.1111/j.1467-2979.2012.00488.x.
Pollock, L.J., Tingley, R., Morris, W.K., et al. (2014) Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution 5, 397-406. doi:10.1111/2041-210X.12180.
Pope, J.G., Bartolino, V., Kulatska, N., et al. (2019) Comparing the steady state results of a range of multispecies models between and across geographical areas by the use of the jacobian matrix of yield on fishing mortality rate. Fisheries Research 209, 259-270. doi:10.1016/j.fishres.2018.08.011.
R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Reich, B.J., Pacifici, K. and Stallings, J.W. (2018) Integrating auxiliary data in optimal spatial design for species distribution modelling. Methods in Ecology and Evolution 9, 1626-1637. doi:10.1111/2041-210X.13002.
Reum, J.C.P., Blanchard, J.L., Holsman, K.K., Aydin, K. and Punt, A.E. (2019) Species-specific ontogenetic diet shifts attenuate trophic cascades and lengthen food chains in exploited ecosystems. Oikos 0. doi:10.1111/oik. 05630.

Rochet, M.-J., Collie, J.S., Jennings, S. and Hall, S.J. (2011) Does selective fishing conserve community biodiversity? Predictions from a length-based multispecies model. Canadian Journal of Fisheries and Aquatic Sciences 68, 469-486. doi:10.1139/F10-159.
Rooper, C.N., Sigler, M.F., Goddard, P., et al. (2016) Validation and improvement of species distribution models for structure-forming invertebrates in the eastern Bering Sea with an independent survey. Marine Ecology Progress Series 551, 117-130. doi:10.3354/meps11703.
Schliep, E.M., Lany, N.K., Zarnetske, P.L., Schaeffer, R.N., Orians, C.M., Orwig, D.A. and Preisser, E.L. (2018) Joint species distribution modelling for spatio-temporal occurrence and ordinal abundance data. Global Ecology and Biogeography 27, 142-155. doi:10.1111/geb.12666.
Shin, Y.-J. and Cury, P. (2001) Exploring fish community dynamics through size-dependent trophic interactions using a spatialized individual-based model. Aquatic Living Resources 14, 65-80. doi:10.1016/S0990-7440(01)01106-8.
Skaug, H. and Fournier, D. (2006) Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models. Computational Statistics \& Data Analysis 51, 699-709.
Spence, M.A., Blanchard, J.L., Rossberg, A.G., et al. (2018) A general framework for combining ecosystem models. Fish and Fisheries 19, 1031-1042. doi:10.1111/faf. 12310.
Spencer, P.D., Holsman, K.K., Zador, S., Bond, N.A., Mueter, F.J., Hollowed, A.B. and Ianelli, J.N. (2016) Modelling spatially dependent predation mortality of eastern Bering Sea walleye pollock, and its implications for stock dynamics under future climate scenarios. ICES Journal of Marine Science: Journal du Conseil 73, 1330-1342. doi:10.1093/icesjms/fsw040.
Spies, I., Aydin, K., Ianelli, J.N. and Palsson, W. (2017) 7. Assessment of the arrowtooth flounder stock in the Gulf of Alaska. In: Stock assessment and fishery evaluation report for the groundfish fisheries of the Gulf of Alaska. North Pacific Fishery Management Council, Seattle, WA, pp 743-840.
Stevenson, D.E. and Lauth, R.R. (2019) Bottom trawl surveys in the northern Bering Sea indicate recent shifts in the distribution of marine species. Polar Biology 42, 407-421. doi:10.1007/s00300-018-2431-1.
Thorson, J.T. (2019a) Forecast skill for predicting distribution shifts: A retrospective experiment for marine fishes in the Eastern Bering Sea. Fish and Fisheries 20, 159-173. doi:10.1111/faf.12330.
Thorson, J.T. (2019b) Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fisheries Research 210, 143-161. doi:10.1016/j.fishres.2018.10.013.
Thorson, J.T. (2019) Measuring the impact of oceanographic indices on species distribution shifts: The spatially varying effect of cold-pool extent in the eastern Bering Sea. Limnology and Oceanography 0. doi:10.1002/Ino.11238.
Thorson, J.T. (2018) Three problems with the conventional delta-model for biomass sampling data, and a computationally efficient alternative. Canadian Journal of Fisheries and Aquatic Sciences 75, 1369-1382. doi:10.1139/cjfas-2017-0266.
Thorson, J.T. and Barnett, L.A.K. (2017) Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES Journal of Marine Science 74, 1311-1321. doi:10.1093/icesjms/fsw193.

Thorson, J.T., Ianelli, J.N., Larsen, E.A., Ries, L., Scheuerell, M.D., Szuwalski, C. and Zipkin, E.F. (2016) Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring. Global Ecology and Biogeography 25, 1144-1158. doi:10.1111/geb.12464.
Thorson, J.T. and Kristensen, K. (2016) Implementing a generic method for bias correction in statistical models using random effects, with spatial and population dynamics examples. Fisheries Research 175, 66-74. doi:10.1016/j.fishres.2015.11.016.
Thorson, J.T., Munch, S.B. and Swain, D.P. (2017) Estimating partial regulation in spatiotemporal models of community dynamics. Ecology 98, 1277-1289. doi:10.1002/ecy. 1760.
Tittensor, D.P., Eddy, T.D., Lotze, H.K., et al. (2018) A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development 11, 1421-1442. doi:10.5194/gmd-11-1421-2018.
Tommasi, D., Stock, C.A., Hobday, A.J., et al. (2017) Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Progress in Oceanography 152, 15-49. doi:10.1016/j.pocean.2016.12.011.
Van Kirk, K.F., Quinn, T.J. and Collie, J.S. (2010) A multispecies age-structured assessment model for the Gulf of Alaska. Canadian Journal of Fisheries and Aquatic Sciences 67, 1135-1148. doi:10.1139/F10-053.
Von Szalay, P.G. and Raring, N.W. (2016) Data report: 2015 Gulf of Alaska bottom trawl survey. NMFS-AFSC-325. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, WA.
Walters, C.J., Christensen, V., Martell, S.J. and Kitchell, J.F. (2005) Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES Journal of Marine Science 62, 558568. doi:10.1016/j.icesjms.2004.12.005.

Walther, Y.M. and Möllmann, C. (2014) Bringing integrated ecosystem assessments to real life: a scientific framework for ICES. ICES Journal of Marine Science 71, 1183-1186. doi:10.1093/icesjms/fst161.
Wetzel, C.R., Cronin-Fine, L. and Johnson, K.F. (2017) Status of Pacific ocean perch (Sebastes alutus) along the US west coast in 2017. Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, WA.

Table 1 - Model selection among candidate models, showing the model name (see Section 2.3 in main text for details), the marginal log-likelihood of the maximum likelihood estimate, the number of fixed effects, and the Akaike Information Criterion score for each model (where the most parsimonious model has $\triangle A I C=0$ and models with $\triangle A I C<3$ have some statistical support (Burnham and Anderson 2002)

Model	Negative log- likelihood	Number of parameters	$\Delta A I C$
Index standardization	142867.2	160	6.6
Complete density dependence	143019.9	56	103.9
Same density dependence	142971.6	57	9.3
Different density dependence	142964.4	60	1
Species interactions	142959.9	64	0

Table 2 - Estimated interactions from the "species interactions" model (listing standard errors in parentheses), specifically listing B-I such that the element in the "arrowtooth" column and "Alaska pollock" row shows that a 1% increase in density for arrowtooth is estimated to cause a -0.07 decrease in per-capita productivity for Alaska pollock.

		Impact of a 1\% increase in density of ...			
		Arrowtooth	Alaska pollock	Pacific cod	Pacific halibut
	Arrowtooth	-0.28 (0.06)	-0.05 (0.02)	-0.04 (0.03)	0.12 (0.06)
	Alaska pollock	-0.07(0.06)	-0.32 (0.04)	0.03 (0.02)	-0.10 (0.07)
	Pacific cod	0.07 (0.04)	-0.05 (0.02)	-0.40 (0.04)	0.10 (0.06)
	Pacific halibut	0.06 (0.04)	-0.04 (0.02)	-0.03 (0.02)	-0.28 (0.07)

Fig. 1 - Total biomass for each species in each of five models (see legend in top-left panel for color codes and Appendix B for detailed model descriptions), as well as fishing mortality rate (black dashed line with scale on right-hand y-axis) for each species. Note that the "index standardization" (black dashed lines) and "complete density dependence" (grey solid lines) models predict biomass only in years with available data and are shown as lines with whiskers $(+/-$ one standard error), while other models predict biomass in years without sampling and are shown as a shaded interval ($+/$ one standard error)

Fig. 2 - Biological reference points estimated by three MICE-in-space models (i.e., excluding the "index-standardization" and "complete density dependence" models which cannot estimate biological reference points), where $b_{\text {targ }}$ is 40% of estimated biomass in the absence of fishing, and $f_{\text {targ }}$ is the fishing mortality estimated to result in biomass equal to $b_{t a r g}$ on average.

Fig. 3 - Estimates of the natural logarithm of biomass density from the AIC-selected "species interactions" model (red: high density; blue: low density) for each species (columns) in several years (rows), where the first year (top row) shows the estimate of unfished biomass. Years are chosen for illustration to be approximately even spaced but only using years with available survey data, and where the density legend is identical among species and years and has units $\ln \left(k g \cdot k m^{-2}\right)$

Fig. 4 - Estimated stock status (y-axis) for each year (x-axis), measured using a fishing intensity ratio (left column: $f_{\text {ratio }}(c, t)$) and biomass ratio ($b_{\text {ratio }}(c, t)$, see Eq. 11) for each species (rows) and the three MICE-in-space models that estimate biological reference points (see legend in bottom-right panel for color codes). Each panel shows the maximum likelihood estimate (central line) and ± 1 standard error (shaded area and outer lines), as well as the corresponding target (horizontal dotted line); note that y -axes differ between panels.

Fig. 5 - Illustration of simulation experiment, showing natural logarithm of unfished biomass density ($1^{\text {st }}$ and $2^{\text {nd }}$ rows) and population density in 2015 ($3^{\text {rd }}$ and $4^{\text {th }}$ rows) in units $\ln \left(\mathrm{kg} \cdot \mathrm{km}^{-2}\right)$ for the two species included in the estimation model (columns), where the colorbar is shown in the bottom-right panel (red is high density and blue is low density). This illustration allows comparison of true simulated density ($1^{\text {st }}$ and $3^{\text {rd }}$ rows) vs. estimated density ($2^{\text {nd }}$ and $4^{\text {th }}$ rows) when simulating a new data set conditional on fixed effects estimated from real-world data. Note that the simulation model simulates density for four species at a fine spatial scale (using $n_{x}=100$ knots), while the estimation model estimates density for only two species at a coarse spatial scale (using $n_{x}=50$ knots). For visual clarity, we do not show
simulated density for the two species that are not then included in the estimation model for each simulation replicate.

Fig. 6 - Illustration of results from a simulation experiment where each panel shows the frequency distribution (y -axis) for different estimated values (x -axis), specifically showing estimates of the interaction matrix B (Fig. 6A) or biological reference points including fishing mortality resulting in 40% of average unfished biomass, $\mathbf{f}_{0.4}$ (Fig. 6B left column) or the relative error in estimates of unfished biomass, $\mathbf{b}_{\text {targ }}$ (Fig. 6B, right column) from a simulation experiment generating data based on the AIC-selected "species interactions" model, and then restricting data to two species (arrowtooth and Alaska pollock) and fitting at a coarse spatial resolution (50 knots). Each panel in the visualization of the interaction matrix (Fig. 6A) shows a histogram of estimates from each simulation replicate, where the true value is indicated by a vertical dashed line and the mean and standard deviation of estimates is listed (see Table 2 for true values). The visualization of biological reference points (Fig. 6B) similarly shows a histogram of estimates and the true value, and again lists the mean and standard deviation of estimates.

Fig. 1

Fig. 3

Fig. 4

Fig. 5

Fig. 6

